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Rickards CA, Vyas N, Ryan KL, Ward KR, Andre D, Hurst GM,
Barrera CR, Convertino VA. Are you bleeding? Validation of a
machine-learning algorithm for determination of blood volume status:
application to remote triage. J Appl Physiol 116: 486—494, 2014. First
published January 9, 2014; doi:10.1152/japplphysiol.00012.2013.—Due
to limited remote triage monitoring capabilities, combat medics can-
not currently distinguish bleeding soldiers from those engaged in
combat unless they have physical access to them. The purpose of this
study was to test the hypothesis that low-level physiological signals
can be used to develop a machine-learning algorithm for tracking
changes in central blood volume that will subsequently distinguish
central hypovolemia from physical activity. Twenty-four subjects
underwent central hypovolemia via lower body negative pressure
(LBNP), and a supine-cycle exercise protocol. Exercise workloads
were determined by matching heart rate responses from each LBNP
level. Heart rate and stroke volume (SV) were measured via Finom-
eter. ECG, heat flux, skin temperature, galvanic skin response, and
two-axis acceleration were obtained from an armband (SenseWear
Pro2) and used to develop a machine-learning algorithm to predict
changes in SV as an index of central blood volume under both
conditions. The algorithm SV was retrospectively compared against
Finometer SV. A model was developed to determine whether un-
known data points could be correctly classified into these two condi-
tions using leave-one-out cross-validation. Algorithm vs. Finometer
SV values were strongly correlated for LBNP in individual subjects
(mean r = 0.92; range 0.75-0.98), but only moderately correlated for
exercise (mean r = 0.50; range —0.23—0.87). From the first level of
LBNP/exercise, the machine-learning algorithm was able to distin-
guish between LBNP and exercise with high accuracy, sensitivity, and
specificity (all =90%). In conclusion, a machine-learning algorithm
developed from low-level physiological signals could reliably distin-
guish central hypovolemia from exercise, indicating that this device
could provide battlefield remote triage capabilities.

triage algorithm; lower body negative pressure; exercise; central
hypovolemia

RECENT DATA INDICATE THAT 80% of potentially survivable bat-
tlefield injuries were due to hemorrhage from major trauma
(15), consistent with reports of previous studies in this popu-
lation (14, 17, 20). These findings highlight the requirement to
improve clinical training and monitoring technologies in the
prehospital setting to ensure early and accurate detection and
treatment of life-threatening hemorrhage. Extensive investiga-
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tions have been conducted to determine the early physiological
responses to hemorrhage to develop advanced monitoring tech-
nologies for prehospital battlefield use by the first responder
combat medic (6, 8). One area of particular focus has been on
the development of monitoring techniques for “remote triage”
applications (10, 22, 24), where the medic does not have
physical and/or visual access to the injured patient.

Since monitoring capabilities have not yet been developed
for accurate clinical assessment of injuries in these remote
battlefield settings, combat medics cannot currently distinguish
a wounded and bleeding soldier from a soldier who is engaged
in combat. Furthermore, current medical monitors do not
provide adequate information for accurate determination of
injury severity, even if the medic does have physical access to the
patient (8). Our laboratory has previously shown that many vital
signs, both standard [e.g., heart rate (HR), respiration rate] and
derived (e.g., HR variability), lack the specificity required to
distinguish a bleeding soldier from one who is physically active,
as both conditions elicit similar physiological responses (e.g.,
increases in HR and decreases in HR variability) (22, 24). A
measure of blood volume status, however, will be able to distin-
guish between these two conditions, as central blood volume
increases with exercise and decreases during hemorrhage (22).

Our laboratory recently reviewed the current status of “re-
mote triage” applications for monitoring hemorrhaging pa-
tients in the military setting (24). In this review, preliminary
data were presented on a novel technology that incorporates a
machine-learning algorithm for the assessment of central blood
volume via pulse pressure [a noninvasive surrogate of stroke
volume (SV)]. These data demonstrated the ability of the
algorithm to track a physiological feature associated with
alterations in central blood volume (i.e., pulse pressure) in-
duced by progressive lower body negative pressure (LBNP) as
a simulation of hemorrhage in healthy human subjects (24).

In the present “proof of concept” laboratory-based study, rather
than assessing a surrogate of SV, we tested the hypothesis that a
machine-learning algorithm could continuously track changes in
actual SV (derived from the arterial pressure waveform), and
subsequently distinguish central hypovolemia from exercise.

METHODS

Subjects

Sample size calculation. A correlation coefficient of 0.75 between
actual and predicted SV values is considered practically relevant for
this study; based on » = 0.75, a power of 0.8, and an « of 0.05, a
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Fig. 1. Responses of heart rate (A) and stroke volume (B) during progressive
lower body negative pressure (LBNP) and exercise. Values are means + SE;
N = 24 subjects. P value represents comparison between conditions at each
level of LBNP/exercise.

minimum sample size of 12 subjects was required. Twenty-four
healthy, normotensive, nonsmoking subjects (12 men, 12 women; age,
28 = 7 yr; height, 171 = 11 cm; weight, 70 = 11 kg; means * SD)
volunteered to participate in this study. These subjects were specifi-
cally selected from a larger pool of 68 subjects (31 women, 37 men),
according to two criteria: /) subject was wearing the SenseWear Pro2
Armband during exposure to a progressive LBNP protocol; and 2)
subject demonstrated linear increases in HR from baseline to presyn-
cope. Inclusion only of subjects with linear increases in HR was
required to elicit similar cardiovascular stress under both hypovolemia
and exercise, hence removing this sensitive, but nonspecific metric as
a distinguishing feature between conditions. Additionally, the LBNP-
induced HR responses were subsequently used to set the exercise
workloads (described in detail below). The studies were conducted at
the US Army Institute of Surgical Research, Fort Sam Houston, TX,
and all experimental protocols and procedures were reviewed and
approved by the Institutional Review Board of the Brooke Army
Medical Center, Fort Sam Houston, TX. A complete medical history
and physical examination were conducted on each potential subject
before participation, and all women were administered a urine preg-
nancy test before the LBNP portion of experimentation. Female
subjects were excluded from involvement if pregnant. Because of

potential effects on autonomic function, all subjects were instructed to
maintain their normal sleep patterns in addition to abstaining from
exercise, alcohol, caffeine, and other pharmacological stimulants 24 h
before each protocol. After familiarization with the laboratory, sub-
jects were briefed with a description of all procedures and risks
associated with the experiments, and each gave written, informed
consent to participate in the study.

Study Design

All subjects participated in two experimental protocols: /) progres-
sive central hypovolemia via LBNP; and 2) supine cycle exercise.
Subjects completed the LBNP protocol first and returned to the
laboratory at least 11 days later to perform the exercise protocol.

For each protocol, subjects were instrumented with a standard lead
II ECG, infrared finger plethysmography to measure beat-to-beat
arterial blood pressure (Finometer, TNO-TPD Biomedical Instrumen-
tation, Amsterdam, The Netherlands), and an infrared end-tidal CO»
sensor (Gambro, Entrom, Sweden) attached to a facemask. Subjects
also wore a SenseWear Pro2 Armband on the upper left arm that
measured heat flux (HF), HR, skin temperature, galvanic skin re-
sponse, two-axis acceleration, and an ECG signal at a sampling rate of
128 Hz. Subjects wore shorts and t-shirts under both conditions.
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Fig. 2. Heat flux (A) and longitudinal mean absolute difference (LMAD; the
1-min averages of successive absolute differences for the longitudinal axis
accelerometer values; B) responses to progressive LBNP and exercise. Values
are means = SE; N = 21 subjects. P value represents comparison between
conditions at each level of LBNP/exercise.
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The LBNP experiment consisted of a 5-min baseline period, fol-
lowed by progressive 5-min stages of chamber decompression at —15,
—30, —45, and —60 mmHg and the addition of —10-mmHg pressure
every 5 min thereafter. LBNP was terminated with the onset of
cardiovascular collapse, defined as one or a combination of symp-
toms, including sudden bradycardia, an abrupt fall in systolic arterial
pressure (SAP) >15 mmHg, a progressive decrease in SAP reaching
<80 mmHg, and/or voluntary subject termination due to the onset of
presyncopal symptoms, such as gray-out, nausea, sweating, dizziness,
or general discomfort. Following presyncope, subjects remained in the
LBNP chamber for a 10-min recovery period.

For the subsequent graded exercise protocol, a supine cycle ergom-
eter test was chosen to match the body positioning of the LBNP
protocol. Following instrumentation, the exercise protocol com-
menced with a 5-min baseline period with subjects resting their legs
flat beside the cycle ergometer (to ensure baseline measurements were
not influenced by leg position), followed by an additional 5-min
baseline period where subjects’ feet were elevated and strapped into
the cycle ergometer pedals in preparation for the commencement of
exercise. The exercise protocol consisted of progressive increases in
workload in 5-min increments, achieved through adjustments in ca-
dence (i.e., revolutions per minute) and/or cycle resistance. Work-
loads were determined by matching the HR achieved during the last 3
min of the parallel LBNP level, as previously described (22). The
number of exercise workloads matched the number of LBNP levels
completed for each individual subject. The protocol concluded with a
10-min recovery.

Data Analysis

Waveform data. Using data acquisition software (WinDAQ, Dataq
Instruments, Akron, OH), continuous end-tidal CO,, ECG, and blood
pressure waveforms were recorded at 500 Hz during both LBNP and
exercise protocols. All waveform data were then exported to com-
mercial analysis software (WinCPRS, Absolute Aliens, Turku, Fin-
land). R waves generated from the ECG signal were detected and
marked at their occurrence in time. Diastolic arterial pressure and SAP
were marked from arterial blood pressure tracings. SV was estimated
on a beat-to-beat basis by the Finometer using the established pulse
contour method (19). All variables were calculated from the final 3
min for each level of LBNP and exercise. As most subjects (17 of 24)
reached the —70-mmHg LBNP level (baseline plus 5 stages), we
compared the hemodynamic responses over five stages of LBNP with
the HR-matched five stages of exercise (the remaining 7 subjects
reached the fourth stage of LBNP/exercise, and all data were included
for these subjects). Two-way repeated-measures ANOVAs with
Holm-Sidak post hoc tests were used to compare the responses of each
variable between LBNP and exercise conditions (at each level).
Unless otherwise stated, all data are presented as means = SE, to

Time (min)

indicate the uncertainty around the estimate of the mean measurement
(1), and exact P values are presented for all comparisons.
Machine-learning algorithm data. Data from 21 subjects were used
for the machine-learning algorithm from the SenseWear Pro2 Arm-
band due to technical difficulties in obtaining adequate data in three
subjects (6 included subjects reached the fourth stage of LBNP/
exercise; 15 subjects reached the fifth stage of LBNP/exercise).
Utilizing leave-one-subject-out cross-validation (LOUCYV), 1-min av-
erages from the low-level signals obtained from the armband were
used to develop an algorithm to track changes in SV during both the
LBNP and exercise protocols. The LOUCV procedure involves re-
moving the data of one subject at a time from the original sample (test
data) and trains the algorithm on the remaining data (training data);
this process is repeated for each subject. This approach ensures that
potential subject-specific traits are removed from the training data set,
and overfitting does not occur with time-dependent within-subject
data. Features extracted from the QRS complex of the raw ECG signal
generated from the armband included R-R and Q-Q intervals, Q-R and
R-S width, Q-R and R-S height, and difference between Q-R and R-S
height. These, as well as HR variability metrics (including those
derived from discrete wavelet transformation) were used for model
development. Lastly, changes in the galvanic skin response, and skin
temperature were also used to increase the accuracy of regression
models for SV determination. For the classification models (to distin-
guish between exercise and LBNP), additional data from the acceler-
ometer and motion-based variables, such as peak counts, mean cross-
ing counts, and derived toe strikes, were utilized. For feature selec-
tion, search methodologies, such as exhaustive search, forward
variable search (hill climb), hill descent, simulated annealing, and
selection at random (with multiple trials), were used; a total of eight
features were used in the final algorithm (6 from the ECG signal, 1
based on energy expenditure, and HF). A model was then created to
classify data as either the LBNP or exercise condition, and the

Table 1. Relationships between actual and predicted stroke
volume responses to central hypovolemia (via LBNP) and
exercise utilizing the leave-one-out cross-validation
approach

With Baseline Without Baseline
r MAPE r MAPE
LBNP 0.85 15.4 0.86 14.4
Exercise 0.71 11.7 0.71 11.4

N = 21 subjects. r, Correlation coefficient; MAPE, mean absolute percent-
age error; LBNP, lower body negative pressure. Calculations were made using
all available data across all LBNP or exercise levels.
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Table 2. Mean and range of individual correlation
coefficients between actual and predicted stroke volume
across LBNP and exercise

With Baseline Without Baseline
LBNP
Mean 0.92 0.95
Range 0.75-0.98 0.90-0.98
Exercise
Mean 0.50 0.49
Range —0.23-0.87 —0.27-0.93

N = 21 subjects.

accuracy, sensitivity, specificity, and precision (see Table 3 for defi-
nitions) of the model were calculated at the first level and each
successive level of LBNP/exercise.

To assess relationships between actual and predicted hemodynamic
responses to both LBNP and exercise, correlation coefficients (r) and
mean absolute percentage errors (MAPE) were calculated for each
parameter, with and without baseline data included. MAPE is a
measure of accuracy and is calculated by the following: /) subtracting
the predicted value from the actual value, then dividing by the actual
value for each data point; 2) summing each of these values together
for each data point and dividing by the total number of data points;
and 3) multiplying the final value by 100. Statistical agreement
between the two methods for both the LBNP and exercise data was
also assessed via Bland-Altman analysis (4) of the SV data, by
plotting the average SV between methods vs. the difference in SV
between methods for each 1-min average for all subjects. Bias was
calculated as the mean difference between the two methods, while the
upper and lower limits of agreement were estimated as the bias = 2
SD (4).

RESULTS

Hemodynamic Responses

During LBNP, HR increased from 65 * 2 beats/min at
baseline to 116 *= 5 beats/min at the fifth stage. As demon-
strated in Fig. 1A, HR was matched during each exercise level
with the corresponding LBNP level. The highest HRs achieved
at stage 5 were 60 * 3% (range, 42-77%) of estimated
maximum HR (i.e., 220-age). The exercise workloads required
to elicit these increases in HR were only mild-to-moderate,
ranging from 16 = 0.5 W at stage 1, to 68 = 5 W at stage 5.
Estimated SV decreased during LBNP and increased during
exercise (Fig. 1B), distinguishing the two conditions from the
second stage (P < 0.001).

Machine-Learning Algorithm

The machine-learning algorithm integrates responses from
multiple sensors for assessment of changes in SV. Examples of
responses from individual sensors are presented in Fig. 2 for
HF and longitudinal mean absolute difference, the 1-min av-
erages of successive absolute differences for the longitudinal
axis accelerometer values.

The 1-min averages for predicted (algorithm) and actual
(Finometer) SV for both LBNP and exercise conditions are
presented in Fig. 3. Linear correlation coefficients (r values)
and MAPEs presented in Table 1 were calculated using all
available armband data from all subjects for the LBNP and
exercise conditions. These results indicate that, on average, the
algorithm was able to predict the reduction in SV with LBNP

and the increase in SV with exercise, and performance of the
algorithm improved slightly with exclusion of baseline data for
both conditions.

For assessment of the utility of the algorithm in tracking SV
in individual subjects, r values were calculated between actual
and predicted SV during both LBNP and exercise conditions
for each subject (Table 2). On an individual subject basis, and
including baseline data, the algorithm was successfully able to
track the reduction in SV during LBNP with a range of r values
from 0.75 to 0.98; under the exercise condition the algorithm
was less successful in tracking the mild increase in SV, with
only 3 of the 21 subjects exhibiting r values > 0.75 (r values
ranged from —0.23 to 0.87). These relationships improved
slightly in the LBNP condition when baseline data was not
included (Table 2).

Bland-Altman analysis revealed that, on average, the pre-
dicted SV closely matched the actual SV for both LBNP and
exercise conditions, evidenced by a bias close to zero, and the
majority of data points falling within the upper and lower limits
of agreement (Fig. 4). The plots presented in Fig. 4 also reveal,
however, that SV was underestimated at values >115 ml for the
LBNP condition [i.e., baseline and lowest level of LBNP (—15
mmHg); Fig. 4A], and at SVs of >155 ml for the exercise
condition (i.e., higher levels of exercise; Fig. 4B). Additionally,
the limits of agreement are broad for both LBNP (lower limit =
—27.8 ml; upper limit = 27.1 ml) and exercise (lower limit
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dashed horizontal lines represent the limits of agreement (mean bias + 2 SD).
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Table 3. Definitions of terms used for assessing capability of machine learning algorithm for detection of LBENP from

exercise
Term Definition
True positive (TP) No. of data points correctly classified as that of the LBNP protocol
True negative (TN) No. of data points correctly classified as that of the exercise protocol
False positive (FP) No. of data points incorrectly classified as that of LBNP protocol
False negative (FN) No. of data points incorrectly classified as that of exercise protocol
Accuracy (TP + TN)/(TP + TN + FP + FN): proportion of all data points correctly classified
Sensitivity TP/(TP + EN): proportion of LBNP protocol data points that were correctly classified
Specificity TN/(TN + FP): proportion of exercise protocol data points that were correctly classified
Precision LBNP: TP/(TP + FP); Exercise: TN/(TN + EN): proportion of LBNP/exercise protocol data points that were truly LBNP/exercise

data points

—30.6 ml; upper limit = 33.8 ml), indicating significant over- and
underestimation of individual SV values based on this algorithm.

Table 3 provides definitions of the terms used to describe the
efficacy of the machine-learning algorithm for distinguishing
central hypovolemia from exercise; the values for these terms
are presented in Tables 4 and 5. Values were initially calcu-
lated for each independent stage of exercise/LBNP (Table 4),
and then additional data were added to the algorithm for each
successive stage (Table 5). Under both conditions, the algo-
rithm performed exceptionally well, with sensitivity, specific-
ity, accuracy, and precision =90% from the first level.

DISCUSSION

In support of our hypothesis, the findings from this study
demonstrate that a machine-learning algorithm utilizing low-
level physiological signals collected from a wearable armband
was able to reliably track changes in SV during central hypo-
volemia, when subjects were considered both as a group and as
individuals. On an individual subject basis, the algorithm was
less successful at tracking the mild increase in SV elicited by
the exercise protocol. Despite this limitation, the armband
algorithm was also able to successfully distinguish between
reduced SV associated with central hypovolemia (i.e., simu-
lated hemorrhage) and maintained or increased SV associated
with physical exercise, even from the initial stages of each
condition. These findings suggest that such a device could
provide remote triage capabilities for future battlefield and
civilian use.

Our initial investigations into development of a “remote
triage” monitoring tool assessed the potential utility of ECG-
derived HR variability metrics in distinguishing between cen-
tral hypovolemia and exercise (22, 24). HR variability was
targeted as a potential tool for this purpose as the ECG is a
relatively basic, noninvasive, continuous signal routinely col-
lected in the clinical setting, and HR variability had shown
some initial promise in discriminating between prehospital

trauma patients who lived and died (3, 12, 13). While we
demonstrated that various measures of HR variability were not
effective in distinguishing central hypovolemia from activity
(22, 24) [predominantly due to the mathematical effect of
reduced variability with elevated HR (25), independent of the
stimulus], we reported that an indirect measure of central blood
volume, such as pulse pressure, could be used for this purpose
(22). In the present study, we evaluated SV as a noninvasive
measure of central blood volume (5, 21) and found it to
distinguish physiological conditions of central hypo- and hy-
pervolemia with high sensitivity, specificity, accuracy, and
precision. Importantly, the algorithm was also able to distin-
guish these two conditions without baseline measures, the most
likely scenario when using point-of-care monitoring of trauma
patients in any setting.

The continuous measurement of central blood volume also
has important applications for medical care beyond remote
triage. Current patient monitoring systems measure standard
vital signs, including HR, arterial blood pressure (systolic and
diastolic), and pulse oximetry. However, in a study of severely
injured trauma patients in the prehospital setting, the measure-
ment of pulse pressure (an indirect measure of volume status)
could separate survivors from nonsurvivors when HR, SAP,
and arterial oxygen saturation were indistinguishable, and
within a range considered to be clinically unremarkable (12).
These clinical findings are consistent with laboratory studies of
simulated hemorrhage with LBNP, where SV and pulse pres-
sure begin to fall from an early stage (5, 9), while SAP (5),
arterial oxygen saturation (7), and pulse character (23) remain
relatively stable until the onset of cardiovascular collapse.
Taken together, these findings clearly indicate that current
standard vital signs lack the sensitivity to be early indicators of
physiological deterioration and change only when it may be too
late for interventions to be effective. As indicated by the
findings of the present investigation, a measure of volume
status such as SV reflects a sensitive and specific early indi-

Table 4. Detection of LBNP from exercise with the machine-learning algorithm using all available data at each level of
LBNP or exercise, not including previous levels; baseline not included

Level of LBNP/Exercise TP TN FP FN Sensitivity Specificity Accuracy Precision (LBNP) Precision (Exercise)
1 100 97 8 5 0.952 0.924 0.938 0.926 0.951
2 104 100 5 1 0.991 0.952 0.971 0.954 0.990
3 105 99 6 0 1.00 0.943 0.971 0.946 1.00
4 89 94 11 9 0.908 0.895 0.902 0.890 0913
5 52 79 1 6 0.897 0.988 0.949 0.981 0.929

N = 21 subjects.
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Table 5. Detection of LBNP from exercise with the machine-learning algorithm using all available data at each level of
LBNP or exercise, including previous levels; baseline not included

Level of LBNP/Exercise TP TN FP FN Sensitivity Specificity Accuracy Precision (LBNP) Precision (Exercise)
1 100 97 8 5 0.952 0.924 0.938 0.926 0.951
2 204 197 13 6 0.971 0.938 0.955 0.940 0.970
3 309 296 19 6 0.981 0.940 0.960 0.942 0.980
4 398 390 30 15 0.964 0.929 0.946 0.930 0.963
5 450 469 31 21 0.955 0.938 0.946 0.936 0.957

N = 21 subjects.

cator of changes in central blood volume and would be a
valuable decision support tool in addition to the standard vital
signs measured in the prehospital, emergency department,
operating room, and intensive care settings.

Current methods of measuring SV in humans, however, are
either invasive (e.g., thermodilution), require expensive and
cumbersome equipment (e.g., carbon monoxide rebreathing,
thoracic electrical bioimpedance, Doppler ultrasound), and/or
restrict movement and dexterity (e.g., finger photoplethysmog-
raphy). While some of these techniques provide continuous
beat-to-beat measurements of SV, none are easily portable or
could be worn on a continuous basis (e.g., =24 h). In contrast,
advantages of the technology utilized in this study include the
ability to continuously collect low-level physiological signals
without limiting movement or causing any discomfort to the
wearer and no requirement for wires or moving mechanical
parts such as an inflatable cuff. Since this technology is
wireless and requires no tethering to mounted monitors, it
could be valuable in mass-casualty situations where fast and
accurate triage is required, and also as an early warning system
for patients admitted to general medical wards.

The results of the present study show that, while the algo-
rithm was limited in predicting actual SV under either condi-
tion, it was able to reliably track the reduction in SV with
LBNP in individual subjects and was also able to successfully
differentiate LBNP from exercise from an early stage. The
requirement to know the absolute value of SV at any point in
time, however, is not as meaningful to the assessment of
patient status as tracking the trajectory of SV over time as an
indicator of hemorrhage progression. The difficulty in tracking
the change in SV with exercise was likely due to the supine
exercise posture and the mild intensities of exercise used to
elicit the required increase in HR. These two factors resulted in
elevated baseline SV due to posture-induced increases in left
ventricular filling pressure (2, 26), followed by small increases
in SV across the increasing levels of exercise (i.e., 16.3 =
2.6% increase from baseline to stage 5), consistent with other
supine exercise studies (26, 27). The resultant relative homo-
geneity of SV over the exercise protocol leads to generally
poor correlations between the actual and predicted values (18)
(see Fig. 5B for example; Table 2 for intersubject range). By
comparison, SV decreased by 57.5 = 1.9% from baseline to
stage 5 during LBNP, resulting in greater spread of the data
(heterogeneity) and very good correlations between actual and
predicted values on an individual subject basis (see Fig. 5A for
example; Table 2 for intersubject range). Future studies should
be designed to assess the ability of the algorithm to track
greater increases in SV with more intense levels of exercise in
the upright posture to better simulate the proposed monitoring

environments (e.g., soldier in combat, emergency first re-
sponder).

The machine-learning algorithm developed for this study
modeled the known physiological responses to LBNP and
exercise (i.e., SV) with the low-level physiological signals of
HF, galvanic skin response, skin temperature, two-axis accel-
erometry, and a 128-Hz ECG. The HF response is an example
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Fig. 5. Representative examples of the relationships between actual and
predicted SV with heterogeneous data during LBNP, resulting in a strong
correlation (A), and homogeneous data during exercise, resulting in a poor
correlation (B). Data were obtained from the same subject under both condi-
tions.

J Appl Physiol - doi:10.1152/japplphysiol.00012.2013 « www jappl.org

$TOZ ‘P2 laquasag uo wolj papeojumod




492

of how these signals were used for distinguishing central
hypovolemia from exercise (see Fig. 2). Heat generated during
physical exercise is detected by the increase in HF at the level
of the sensor, while the passive nature of central hypovolemia
in this study generally results in a reduction in HF below
baseline levels. Theoretically, any known physiological param-
eter could be modeled using these sophisticated machine-
learning techniques (e.g., tissue pH, intracranial pressure,
blood glucose), highlighting the potential for advanced signal
analysis for medical monitoring capabilities on the battlefield
and in the civilian medical community. In fact, the physiolog-
ical signals utilized in this study have been used for the
development of algorithms for measurement of energy expen-
diture (16). To our knowledge, the present investigation rep-
resents a novel application of this analytic approach in which
machine-learning technologies can be used to integrate and
interpret low-level physiological signals for continuous, real-
time assessment of the clinical status of individual patients
with life-threatening injuries.

Potential implementation of this volume-sensing algorithm
is outlined in the flowchart presented in Fig. 6. Using this
framework, the algorithm could be used to initially distinguish
a bleeding from active individual, and then track the progres-
sion of blood loss over time, including whether effective
control of hemorrhage had occurred. It is anticipated that

EQUIPMENT
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simplified, easy-to-interpret output from this algorithm (e.g.,
one of the six outcomes at the bottom of the flowchart) would
be displayed for the medic to effectively treat the injured
patient. One significant limitation of this decision-assist flow-
chart in its present form is the inability to differentiate a
bleeding and decompensating patient from a resting soldier
recovering from physical activity. Under both circumstances,
SV and HR are decreasing, due to either continued bleeding
and inappropriate bradycardia during the decompensatory
phase of hemorrhage, or reduced metabolic demand during
recovery from exercise. To distinguish these two conditions,
additional information from the current signals obtained from
the armband (e.g., ECG-derived respiratory patterns), or ad-
junct physiological signals (e.g., characteristics of blood pres-
sure or pulse oximetry waveforms) will be required for training
of an algorithm. In the current study, while 21 of the 24
subjects exhibited bradycardia before LBNP termination, the
time of onset ranged from only 0.6 s to 117.7 s, with a median
time of only 12.5 s. These time intervals may not be of
sufficient length for accurate assessment of waveform charac-
teristics between LBNP-induced bradycardia and bradycardia
resulting from recovery from exercise; further investigations in
this area are required to accurately differentiate these two
conditions.
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Fig. 6. Schematic representation of decision-assist flowchart for volume-sensing algorithm in the detection of hemorrhage from physical activity. Dashed lines
represent a current capability gap for the volume-sensing algorithm in distinguishing a bleeding and decompensating patient from an active soldier recovering

from activity.
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Other Methodological Considerations

These findings are presently limited to the conditions tested
in this experimental design. While the level of central hypo-
volemia simulates actual hemorrhage of >20% total blood
volume (11), the HR-matched exercise levels were relatively
low and are probably not representative of the more intense
levels of physical activity often experienced in the combat
setting. Despite this, assessing the algorithm under conditions
of more realistic exercise intensities is likely to yield improved
results in the distinction of central hypovolemia from physical
activity, as previously discussed. Additional environmental
and physiological factors, such as variable HR responses,
temperature extremes (environmental and body), dehydration,
heavy full-length clothing (e.g., military uniform), pain, and
anxiety should also be incorporated into future training, testing,
and refinement of these machine-learning algorithms. Further-
more, for advanced development of these algorithms for ap-
plication to the clinical and field settings, data should be
collected on actual hemorrhaging trauma patients and on sol-
diers and first responders in the field. The latter condition will
be necessary to ascertain wearability and general acceptance of
these devices for physiological status monitoring, which will
eventually dictate user compliance of the final form factor.

CONCLUSIONS

Medical monitoring technologies can be designed for appli-
cation at various echelons of care, including at the point of
injury, during transport from the field to the hospital, and/or
within the hospital environment. The monitoring device (and
associated machine-learning algorithms) described in this
study is designed to be worn continuously as a “physiological
status monitor,” with the potential to record and store baseline
data from the individual wearer, then transforming into a
“remote triage monitor” if the individual is injured. It is
envisioned that this remote triage capability will provide es-
sential decision support to the medic who may not have visual
or physical contact with the soldier due to a variety of combat
scenarios (e.g., terrain, hostile fire, limited visibility, multiple
casualties). The present study provides evidence that this
technology could eventually meet these requirements, as it can
distinguish between central hypovolemia and physical activity
from an early stage and can reliability track the reduction in
central blood volume in individual subjects.
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